LIS1 Regulates Osteoclastogenesis through Modulation of M-SCF and RANKL Signaling Pathways and CDC42

نویسندگان

  • Shiqiao Ye
  • Toshifumi Fujiwara
  • Jian Zhou
  • Kottayil I Varughese
  • Haibo Zhao
چکیده

We have previously reported that depletion of LIS1, a key regulator of microtubules and cytoplasmic dynein motor complex, in osteoclast precursor cells by shRNAs attenuates osteoclastogenesis in vitro. However, the underlying mechanisms remain unclear. In this study, we show that conditional deletion of LIS1 in osteoclast progenitors in mice led to increased bone mass and decreased osteoclast number on trabecular bone. In vitro mechanistic studies revealed that loss of LIS1 had little effects on cell cycle progression but accelerated apoptosis of osteoclast precursor cells. Furthermore, deletion of LIS1 prevented prolonged activation of ERK by M-CSF and aberrantly enhanced prolonged JNK activation stimulated by RANKL. Finally, lack of LIS1 abrogated M-CSF and RANKL induced CDC42 activation and retroviral transduction of a constitutively active form of CDC42 partially rescued osteoclastogenesis in LIS1-deficient macrophages. Therefore, these data identify a key role of LIS1 in regulation of cell survival of osteoclast progenitors by modulating M-CSF and RANKL induced signaling pathways and CDC42 activation.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Combination of IL-6 and sIL-6R differentially regulate varying levels of RANKL-induced osteoclastogenesis through NF-κB, ERK and JNK signaling pathways

Interleukin (IL)-6 is known to indirectly enhance osteoclast formation by promoting receptor activator of nuclear factor kappa-B ligand (RANKL) production by osteoblastic/stromal cells. However, little is known about the direct effect of IL-6 on osteoclastogenesis. Here, we determined the direct effects of IL-6 and its soluble receptor (sIL-6R) on RANKL-induced osteoclast formation by osteoclas...

متن کامل

Pim-1 regulates RANKL-induced osteoclastogenesis via NF-κB activation and NFATc1 induction.

Pim kinases are emerging as important mediators of cytokine signaling pathways in hematopoietic cells. In this study, we demonstrate that Pim-1 positively regulates RANKL-induced osteoclastogenesis and that Pim-1 expression can be upregulated by RANKL signaling during osteoclast differentiation. The silencing of Pim-1 by RNA interference or overexpression of a dominant negative form of Pim-1 (P...

متن کامل

BMP signaling negatively regulates bone mass through sclerostin by inhibiting the canonical Wnt pathway.

Bone morphogenetic proteins (BMPs) are known to induce ectopic bone. However, it is largely unknown how BMP signaling in osteoblasts directly regulates endogenous bone. This study investigated the mechanism by which BMP signaling through the type IA receptor (BMPR1A) regulates endogenous bone mass using an inducible Cre-loxP system. When BMPR1A in osteoblasts was conditionally disrupted during ...

متن کامل

Wear particles enhance autophagy through up-regulation of CD147 to promote osteoclastogenesis

Objective(s): The study aimed to uncover the underlying mechanism linking wear particles to osteoclast differentiation, and we explored the effect of titanium particles of different sizes on CD147 expression and autophagy in macrophages. Materials and Methods: Effects of titanium particles on CD147 and RANKL mRNA were detected by QPCR; protein level of CD147 and Beclin-1 were detected by Wester...

متن کامل

Cocoa administration may accelerate orthodontic tooth movement by inducing osteoclastogenesis in rats

Objective(s): To investigate the effect of cocoa on orthodontic tooth movement (OTM) rate, osteoprotegerin (OPG), and receptor activator of nuclear factor κ β ligand (RANKL) levels after OTM.Materials and Methods: A total of 24 Sprague-Dawley rats were included in the study. They were equally divided into two groups: cocoa and control. The upper incisors of all rats were subjected to 35 cN orth...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره 12  شماره 

صفحات  -

تاریخ انتشار 2016